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Detecting communities in complex networks accurately is a prime challenge, preceding further analyses of
network characteristics and dynamics. Until now, community detection took into account only positively
valued links, while many actual networks also feature negative links. We extend an existing Potts model to
incorporate negative links as well, resulting in a method similar to the clustering of signed graphs, as dealt with
in social balance theory, but more general. To illustrate our method, we applied it to a network of international
alliances and disputes. Using data from 1993-2001, it turns out that the world can be divided into six power
blocs similar to Huntington’s civilizations, with some notable exceptions.
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I. INTRODUCTION

Many complex phenomena can be represented as net-
works, and subsequently be analyzed fruitfully �1–3�. One of
the first targets of network analysis is the detection of com-
munities on the basis of the links, i.e., the possibly valued, or
weighted, arcs or edges that connect the nodes. Intuitively, an
assignment of nodes to communities should be such that
links within communities are relatively dense and between
communities relatively sparse. This means we should com-
pare actual densities to expected densities of links within and
between communities. Furthermore, since nodes, for ex-
ample humans or proteins, can be members of different com-
munities at the same time, e.g., organizations or protein com-
plexes, respectively, the assignment should allow for the
possibility that communities overlap.

In approaches to find appropriate community assign-
ments, much progress has been made in recent years �4–6�
by using a concept known as modularity �7�. While current
modularity approaches take for granted that links are posi-
tively valued, representing bonds or attraction, scientists in
numerous fields grapple with networks that also have nega-
tive links that represent repel, conflict, or opposition, for ex-
ample in neural networks, semantic webs, genetic regulatory
networks, and last but certainly not least, in social networks.

In this paper, we generalize an existing Potts model �8�
for positive links to incorporate negative links as well. We
will follow the intuition that the assignment of nodes related
by negative links should be done the opposite way of posi-
tive links, with negative links sparse within and more dense
between communities, generalizing an old idea from social
balance theory �9�. Finally, we apply our approach to a net-
work of conflicts and alliances between countries.

Recently, it was shown that modularity might miss small
communities embedded in larger ones �10�, and is less accu-
rate if the actual communities are highly different in size
�11�. Our method has two balancing parameters that address

this problem to some extent �12�. Yet community detection
through modularity remains a global rather than a local ap-
proach.

II. PROBLEM STATEMENT

We consider a directed graph G with n nodes and m links,
which can be easily generalized to weighted graphs. We de-
note the total number of positive links in G as m+ and the
number of negative links as m−, hence m=m++m−. We define
the entries of the adjacency matrix of G as follows: if a
positive link is present from node i to node j, Aij =1, if a
negative link is present, Aij =−1, and Aij =0 otherwise. For a
weighted graph the link values, or weights, are denoted by
wij. We separate the negative and positive links by setting
Aij

+ =Aij if Aij �0 and zero otherwise, and Aij
− =−Aij if

Aij �0 and zero otherwise, so A=A+−A−. The positive and
negative in- and outdegrees of i are defined as

�ki
out = �

j

Aij
� �ki

in = �
j

Aji
� �1�

Our challenge is to assign each node i to one of c com-
munities �i� �1, . . . ,c�. A complete configuration of commu-
nity assignments is denoted by ���, which assigns each node
i=1, . . . ,n to a community �1 , . . . ,�n.

III. SOCIAL BALANCE

The challenge of community detection in networks with
positive and negative links was first addressed by social bal-
ance theory, which has its origins in cognitive dissonance
theory �13� from the 1950s. This theory is based on the no-
tion that if two people are positively related, their attitudes
toward a third person should match. For example, if Harry
and Mary are positively related as friends, and both of them
are related to John, they should both be related to him either
positively or negatively. In either case their triad is said to be
socially balanced. If Harry has a positive relationship with
John while Mary is negatively related to John or vice versa,
their triad is socially unbalanced. If all triads in a network are*Corresponding author; vincent.traag@uclouvain.be
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balanced, the network is said to be balanced. This definition
was later generalized to cycles, a triad �a cycle of length 3�
being a special case.

The question whether a balanced network can be divided
into separate parts arises naturally. The challenge is to define
clusters of nodes such that there are only positive link within
clusters and negative links are between clusters. It was
proven �9� that if a connected network is balanced, it can be
split into two opposing clusters �and vice versa�.

However, there is an ambiguous case. If a triad has only
negative relationships, it is neither balanced nor can it be
split into two clusters. But it can obviously be split into three
clusters. In order to accommodate for this possibility, the
definition of balance was generalized to k-balance �14,15�. A
network is k-balanced if it can be divided into k different
clusters, each cluster having only positive links within itself,
and negative links with other clusters. It can be proven �14�
that a network is balanced if and only if it contains no cycles
with exactly one negative link. The intuition is simple. Sup-
pose there is a cycle v1v2 . . .vkv1 with one negative link, say
between v1 and vk, and only positive links between the re-
mainder nodes, then 1 and k are both positively and nega-
tively connected, and the cycle is unbalanced. But if in this
cycle there is also a negative link between i and j, and
1� i� j�k, we can split the cycle in two parts, one cluster
from 1 to i and one from j to k. If there are more than two
negative links, we can split up the cycle analogously into
more clusters.

IV. FRUSTRATION

In reality, however, social networks are rarely, if ever,
fully k-balanced. The question then becomes whether we can
still cluster nodes. Obviously, there are some links that make
a network unbalanced. The number of such links can be ex-
pressed as an amount of frustration. Links that contribute to
frustration are negative links within clusters and positive
links between clusters. So the following expression should
be minimized

�
ij

�Aij
−���i,� j� + �1 − ��Aij

+�1 − ���i,� j�� , �2�

where ���i ,� j�=1 if �i=� j and zero otherwise, and � is a
parameter through which the contribution of the two types of
links can be balanced. This is the approach taken in �16,17�.

The objective, then, is to find a clustering ��� such that
the frustration is minimized. Since the term �1−��Aij

+ does
not depend on the specific configuration and is therefore ir-
relevant for finding the minimum, we can simplify the above
expression to

�
ij

��Aij
− − �1 − ��Aij

+����i,� j� , �3�

We can now see that only for �=1 /2 we retrieve
A=A+−A−, up to a multiplicative constant of 2. Using any
other value for � would change the minimum found, but
changing � is the same as altering the �weights of the� origi-
nal network. Setting �=1 /2 accordingly, we can simplify
further, and now define frustration as

F����� = − �
ij

Aij���i,� j� . �4�

However, frustration does not generalize to a network
with only positive links. In that case, frustration groups to-
gether all nodes into one cluster. Even if there are some
negative links, frustration will cluster together very sparsely
connected nodes. It’s therefore clear that this approach does
not match with current methods of community detection.
Preferably, there should not be a distinction between meth-
ods for positive and others for negative links, but there
should be one method for both.

V. MODULARITY

In approaches to find appropriate community assignments
in networks with only positive links, much progress has been
made recently �4–6�. The principal method for detecting
communities is through modularity optimization, which boils
down to clustering nodes based on the link densities within
and between communities. The link densities should be high
within communities and low between communities.

The ordinary1 definition of modularity for directed graphs
�19� is

Q����� =
1

m
�

s

mss − �mss� , �5�

where mss is the actual number of links within a community
s, �Aij���i ,s���s ,� j�, and �mss� is the expected number of
such links, �pij���i ,s���s ,� j�, where pij is some expected
value in a random null model. The expected values are con-
strained by �pij =m, because the random null model should
have the same number of links as the actual network. Taking
degrees into account, a sensible expectation is
pij =ki

outkj
in /m, which was used in the original definition

�19�.1

1Keep in mind that we consider directed graphs. Therefore the
sum of all degrees is m, not 2m, which is reflected in some minor
changes to the original definitions �18�; see also �19�.

FIG. 1. �Color online� Network illustrating the shortcoming of
modularity when negative links are present. The dashed links have
a weight of −1 and the others have a weight of 1. Using expected
link values pij =ki

outkj
in /m, the expected values equal the actual val-

ues, pij =Aij. Hence the modularity Q=0 for all configurations.
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A straightforward generalization to weighted graphs is to
set Aij =wij and to take the degree measure as the sum of the
link weights. For graphs with negative weights, however, a
problem arises, illustrated in Fig. 1. The weighted degree of
the three nodes a, b and c is ka=1, kb=1 and kc=−1. The
total weighted degree is m=�wij =1. The expected values
pij =ki

outkj
in /m equal the edge weights wij. Hence Aij − pij =0

for all links, and each possible community configuration re-
sults in a modularity Q=0, while the appropriate configura-
tion is clear from the figure: a and b belong to the same
community, and c to another community �20�. Some adapta-
tions of modularity are therefore required to detect commu-
nities in networks with �also� negative links.

VI. POTTS MODEL AND EXTENSION

To get rid of the shortcomings of frustration and modular-
ity, we will attempt to modify the latter. After all, for many
networks with only positive links, modularity has shown to
uncover valid community structures in multiple areas �21�.
We will extend the original definition of modularity to allow
for negative links, by phrasing our challenge as a Potts
model �22�. This model will also show up a close connection
between social balance and modularity.

We start out by treating the positive and the negative links
separately. Mimicking the approach taken by Reichardt and
Bornholdt �8� we first define a Hamiltonian for the positive
part, which represents the “energy” of a given configuration
���. We reward internal positive links by aij and penalize
absent internal positive links by bij, which leads to

H+����� = �
ij

�− aijAij
+ + bij�1 − Aij

+�����i,� j� . �6�

Setting aij =1−bij and bij =	+pij
+, where pij

+ represents the
expected �positive� link between i and j, allows us to sim-
plify the above equation to2

H+����� = − �
ij

�Aij
+ − 	+pij

+����i,� j� . �7�

which is the Potts model analyzed by Reichardt and Born-
holdt �8� if only positive links are present. We define the
negative part analogously, but now we penalize internal
negative links and reward absent negative internal links,

H−����� = �
ij

�Aij
− − 	−pij

−����i,� j� . �8�

The effect of the negative links on the energy of the entire
configuration is opposite to the effect of the positive links.
Combining the two Hamiltonians into one yields

H����� = �1 − ��H+����� + �H−����� , �9�

where � plays a similar role as in frustration, of balancing
the effects of positive and negative links. As explained ear-
lier, it makes sense to weigh the contributions of each part
equally, thus �=1 /2. To illustrate, let us define a new matrix
Bij = �1−��Aij

+ −�Aij
−, and construct the Hamiltonian for this

altered network by setting �=1 /2. Since the expected values
for B are pij�

+= �1−��pij
+ and pij�

−=�pij
−, the Hamiltonian for B

is equivalent to the one for A, up to a multiplicative constant
of 2. So we may indeed set �=1 /2 and then simplify the
above Hamiltonian �up to the multiplicative constant of 2� to

H����� = − �
ij

�Aij − �	+pij
+ − 	−pij

−�����i,� j� , �10�

which is the measure that we optimize to detect a community
structure in networks with both positive and negative links. It
can be easily seen that when the network is positive �and
	�=1� we obtain

Q����� = −
1

m
H����� . �11�

So minimizing the Hamiltonian �10� is the same as maximiz-
ing modularity. In fact we just compare the original network
to the appropriate negative link null model, which wasn’t the
case in the original modularity �18� and in the Potts model
�8�.

The simplest version of the expected values, pij
�, is ob-

tained by just regarding the proportion of positive or of nega-
tive links in the network, pij

�=m� /n�n−1�. If we want to
take the degree distribution into account, then
pij

�= �ki
out �kj

in /m�. The modularity given in �20� also de-
fines this negative link null model appropriately, and is a
special case of ours.

When 	+=	−=0, the Hamiltonian �10� equals the frustra-
tion �4� of the network, and if the network is also balanced
and complete �no missing edges�, minimizing the Hamil-
tonian �10� yields the same result as minimizing the frustra-
tion �4�. This can be pointed out by defining the probabilities
by pij

�=m� /n�n−1�, and by allowing the complete and
balanced network to consist only of link values
Aij � �−1,1�. Then, as long as 	+m+−	−m−�n�n−1�, the
coupling Aij − �	+pij

+ −	−pij
−� between each positively associ-

ated pair of nodes is positive. Hence, the configuration pro-
duced by minimizing the Hamiltonian is the same as when
minimizing the frustration.

VII. THE GROUND STATE

Finding the actual minimum of the Hamiltonian—the so-
called ground state—is NP hard �23�, and therefore only heu-
ristic methods can be applied. Our modularity �11� can be
easily integrated with existing algorithms for modularity op-
timization, such as eigenvector �6�, extremal optimization
�4�, fast unfolding �24�, or simulated annealing �8,25�. We
opted for simulated annealing �26� to minimize the Hamil-
tonian �10� because it performs well in standard performance
tests �8,27–29�, although it’s not the fastest algorithm
�24,30�. Here we will give a short overview of how to adapt
the simulated annealing approach �8� to incorporate negative
links.

First, it’s convenient to define the adhesion between com-
munity r and s, similar to �8�,2Notice that if we have a weighted network, aij =wij −bij.
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ars = �mrs
+ − mrs

− � − ��mrs
+ � − �mrs

− �� ,

where mrs
�=�Aij

����i ,r���� j ,s� is the actual number of arcs
from r to s and �mrs

��=�	�pij
����i ,r���� j ,s� is the expected

number of arcs from r to s. Hamiltonian �10� can be rewrit-
ten accordingly,

H����� = �
s

ass = − �
r�s

ars, �12�

where r and s are communities in ���.
In order to minimize the Hamiltonian, we consider the

effect of moving a single node from one community to an-
other, expressed in terms of adhesion. More specifically,
moving node v from r to s results in the following change,


H��v:r → s� = �avr + arv� − �avs + asv� , �13�

where avr is the adhesion between node v and its comple-
ment in community r. Let us write the mutual adhesion of a
node v and a community r as �v�r�=avr+arv. If, for the sake
of argument, the mutual adhesion of v and s is larger than the
mutual adhesion of v and r, 
H��v :r→s�=�v�r�−�v�s� de-
creases the Hamiltonian. In other words, v has more positive,
or less negative, links than expected to s than to r, and mov-
ing v to s would improve the configuration.

To each move we can assign a probability �26�

Pr��v:r → s� =
exp��
H��v:r → s��

�
i

exp��
H��v:r → i��
,

where T is the temperature and �=1 /T. By slowly
decreasing the temperature, the probability of moving to an-
other state approaches the maximum possible, thereby forc-
ing the system into its minimum energy, i.e., the ground
state. Notice that in principle the probabilities are dependent
on the total energy H��v :r→s�, but since H��v :r→s�
=H�����+
H��v :r→s� we can simplify to the equation
stated above.

The algorithm iterates randomly over the nodes a number
of times, after which the temperature is decreased to a lower
temperature T� stepwise, and usually �although not necessar-
ily� T�=0.99T. The iterations and the lowering of the tem-
perature are continued until there are no further �significant�
improvements. Any further changes would result in a higher
energy, which we do not want, hence the resulting configu-
ration of minimum energy is our solution ���. Herein, for
any set of nodes u, its mutual adhesion to its own community
s is stronger than to any other community r, �u�s�
�u�r�,
which is clear when one looks at Eq. �13�.

Furthermore, the cohesion, or self-adhesion, ass of a com-
munity is always positive, ass
0, and the mutual adhesion
between two communities is always negative, ars+asr�0. If
the cohesion were negative, we could then move a set of
nodes to another community and thereby decrease the en-
ergy, which would contradict the fact that the system is in the
ground state.

In fact these last two inequalities can be rephrased,
which yields some insight into the effect of the parameters
	�. If we assume, for analytic purposes, that pij

�= p�

=m� /n�n−1�, the expected values become �mrs
��= p�nrns for

r�s and �mss
��= p�ns�ns−1�, where ns is the number of

nodes in community s. Writing this out we arrive at

mss
+ − mss

−

ns�ns − 1�



	+m+ − 	−m−

n�n − 1�



�mrs
+ − mrs

− � + �msr
+ − msr

− �
2nrns

,

�14�

wherein the middle term is a sort of global density. Hence by
changing 	� we change the threshold for clustering nodes
together versus keeping them apart. Either way, the density
within a community is always higher than the global density
of the network, while the density between communities is
always lower than the global density. Increasing 	+ raises the
threshold for nodes to be clustered, and will �generally� re-
sult in smaller communities detected, possibly embedded in
larger and sparser communities. Increasing 	− has the oppo-
site effect and lowers the threshold, and will �generally� re-
sult in a configuration of larger communities.

VIII. APPLICATION

To show how our method can be applied to an empirical
network, we analyze international relations taken from the
Correlates of War �31,32� data set over the period 1993–
2001, where military alliances can be represented by positive
links and disputes by negative links. The data set contains a
wide variety of disputes, for example border tensions be-
tween Colombia and Venezuela, the deployment of Chinese
submarines to Japanese islands, and Turkish groups entering
Iraqi territory. Disputes were assigned hostility levels, from
“no militarized action” to “interstate war,” and we chose the
mean level of hostility between two countries over the given
time interval as the weight of their negative link. The alli-
ances we coded one of three values, for �1� entente, �2� non-
aggression pact, or �3� defense pact. The disputes wij

− and
alliances wij

+ are both normalized to values in the interval
wij

�� �0,1� which then bear equal weight in the overall link
value wij =wij

+ −wij
−. The largest connected component con-

sists of 161 nodes �countries� and 2517 links �conflicts and
alliances�.

The result of the analysis �Q=0.561� is shown in Fig. 2.
Countries of the same color �or pattern� belong to the same
community, which in this context is more appropriately la-
beled a power bloc. How strongly a country belongs to its
power bloc can be determined by the adhesion �v�s� a node
has to its community. The power blocs can be identified as
follows: �1� the West; �2� Latin America; �3� Muslim World;
�4� Asia; �5� West Africa; and, �6� Central Africa. If we de-
tect communities by using only positive links, there is an
agreement of about 64% with the configuration in Fig. 2,
while if using only negative links, there is an agreement of
about 30%.

Our result resembles the configuration depicted in Hun-
tington’s renowned book The Clash of Civilizations �33�,
with a few notable exceptions. The West African power bloc
is an additional insight that is absent in Huntington’s con-
figuration. A major difference with Huntington is that China

V. A. TRAAG AND JEROEN BRUGGEMAN PHYSICAL REVIEW E 80, 036115 �2009�

036115-4



itself does not constitute a separate bloc, nor does Japan or
India. Some other noteworthy differences are Pakistan and
Iran which are grouped with the West, while South Korea
and South Africa are grouped with the Muslim World.

If we run the algorithm with 	+=0.1 and 	−=1, North
America merges with Latin America, while Europe becomes
an independent community, and North Africa and the Middle
East align with Russia and China. When setting 	+=1 and
	−=2, in contrast, former Soviet countries separate from
Russia and form an independent community. Using a range
of values for 	�, one can detect various layers in the com-
munity structure.

Our configuration does not imply that conflicts take place
between power blocs only, as 24% of all conflicts actually
take place within blocs. For example, Georgia and Russia
had serious conflicts, and DR of Congo and Rwanda had
theirs, but each of these pairs is grouped together neverthe-
less. In these cases, the alliances overcame the conflicts in
the grouping, confirming that a configuration of international
relations is more than the sum of bilateral links.

Our political analysis here is limited, since we wish to
demonstrate the method rather than present a complete cov-
erage of international alliances and disputes. Other ap-
proaches that could be brought into play are the democratic
peace theory �34,35�, which predicts few conflicts between
democratic countries but fails to predict that in actuality,
most conflicts occur between democratic and nondemocratic
countries; the realist school �36�, which emphasizes geopo-
litical concerns; and, the trade-conflict theory �37�, which
argues that �strong� trade relations diminish the probability
of a dispute, or lower its intensity. In sum, although Hunting-

ton’s configuration of civilizations was questioned �38,39�, it
seems to be fairly robust and with some marked exceptions
is confirmed by our analysis.

IX. CONCLUSION

We have extended the existing Potts model by adapting
the concept of modularity to detect communities in complex
networks where both positive and negative links are present.
This approach solves a long-standing problem in the theory
of social balance, namely the clustering of signed graphs.

As a case in point, we have analyzed a social network of
international disputes and alliances. Other applications could
be networks of references on the Web �40� or in blogs �41�. If
in these data positive and negative references are distin-
guished, our method makes possible to detect not only the-
matic clusters, but also positional clusters with internal
agreement and external disagreement.

For network data, the model’s parameters �	�� can be
used to find smaller �sub� communities, although there is
currently no theoretical guidance to choose parameter values
�12�. Even if there were such guidance, the modularity ap-
proach intrinsically aims at global rather than local optimi-
zation. Our implementation is based on simulated annealing
�8,26�, which performs quite well with standard tests, al-
though for very large networks, faster algorithms will be
necessary �24�.

Whatever algorithms future researchers will use, or im-
provements of the concept of modularity they will develop,
being able to detect communities in networks with both posi-
tive and negative links is important in numerous fields of

FIG. 2. �Color online� Map of the communities in the conflict and alliance network found using the algorithm described in the text
�Q=0.561, 	�=1�.
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science, and a stepping stone toward further analyses of com-
plex networks.

ACKNOWLEDGMENTS

The authors like to thank anonymous referees and Jean-
Charles Delvenne for their valuable comments and advice.

VT acknowledges support from a grant “Actions de
recherche concerts Large Graphs and Networks” of the
“Communauté Française de Belgique” and from the Belgian
Network DYSCO �Dynamical Systems, Control, and Opti-
mization�, funded by the Interuniversity Attraction Poles
Programme, initiated by the Belgian State, Science Policy
Office.

�1� S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U.
Hwang, Phys. Rep. 424, 175 �2006�.

�2� S. Dorogovtsev, A. Goltsev, and J. Mendes, Rev. Mod. Phys.
80, 1275 �2008�.

�3� J. Bruggeman, Social Networks: An Introduction �Routledge,
London, 2008�.

�4� J. Duch and A. Arenas, Phys. Rev. E 72, 027104 �2005�.
�5� G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature �London�

435, 814 �2005�.
�6� M. E. J. Newman, Phys. Rev. E 74, 036104 �2006�.
�7� M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A.

99, 7821 �2002�.
�8� J. Reichardt and S. Bornholdt, Phys. Rev. E 74, 016110

�2006�.
�9� F. Harary, Mich. Math. J. 2, 143 �1953�.

�10� S. Fortunato and M. Barthélemy, Proc. Natl. Acad. Sci. U.S.A.
104, 36 �2007�.

�11� H. Du, D. R. White, Y. Ren, and S. Li �to be published�.
�12� J. M. Kumpula, J. Saramäki, K. Kaski, and J. Kertész, Eur.

Phys. J. B 56, 41 �2007�.
�13� F. Heider, J. Psychol. 21, 107 �1946�.
�14� J. A. Davis, Hum. Relat. 20, 181 �1967�.
�15� D. Cartwright and F. Harary, Elemente der Mathematik 23, 85

�1968�.
�16� P. Doreian and A. Mrvar, Soc. Networks 18, 149 �1996�.
�17� P. Jensen, Phys. Rev. E 74, 035101 �2006�.
�18� M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113

�2004�.
�19� E. A. Leicht and M. E. J. Newman, Phys. Rev. Lett. 100,

118703 �2008�.
�20� S. Gomez, P. Jensen, and A. Arenas, Phys. Rev. E 80, 016114

�2009�.
�21� J. Reichardt, Structure in Complex Networks, Lecture Notes in

Physics �Springer, New York, 2008�.
�22� F. Y. Wu, Rev. Mod. Phys. 54, 235 �1982�.
�23� U. Brandes, D. Delling, M. Gaertler, R. Göerke, M. Hoefer, Z.

Nikoloski, and D. Wagner, e-print arXiv:physics/0608255v2.
�24� V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,

J. Stat. Mech.: Theory Exp. 2008, P10008 �2008�.
�25� R. Guimerà, S. Mossa, A. Turtschi, and L. A. Amaral, Proc.

Natl. Acad. Sci. U.S.A. 102, 7794 �2005�.
�26� S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science 220,

671 �1983�.
�27� L. Danon, D. Aguilera, J. Duch, and A. Arenas, J. Stat. Mech.:

Theory Exp. �2005�, P09008.
�28� R. Guimerà and N. L. A. Amaral, Nature �London� 433, 895

�2005�.
�29� A. Lancichinetti, S. Fortunato, and F. Radicchi, Phys. Rev. E

78, 046110 �2008�.
�30� M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 103, 8577

�2006�.
�31� F. Ghosn, G. Palmer, and S. Bremer, Conflict Management and

Peace Science 21, 133 �2004�.
�32� D. M. Gibler and M. Sarkees, J. Peace Res. 41, 211 �2004�.
�33� S. P. Huntington, The Clash of Civilizations and the Remaking

of World Order �Simon & Schuster, New York, 1996�.
�34� P. R. Hensel, G. Goertz, and P. F. Diehl, J. Polit. 62, 1173

�2000�.
�35� D. Tocqueville and A, Democracy in America �Perennial, New

York, 2000�.
�36� H. Kissinger, Diplomacy �Simon & Schuster, New York,

1994�.
�37� S. W. Polachek, J. Robst, and Y. C. Chang, J. Peace Res. 36,

405 �1999�.
�38� E. A. Henderson and R. Tucker, Int. Stud. Q. 45, 317 �2001�.
�39� B. M. Russett, J. R. Oneal, and M. Cox, J. Peace Res. 37, 583

�2000�.
�40� G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee,

ptComputer 35, 66 �2002�.
�41� L. A. Adamic and N. Glance, LinkKDD ’05: Proceedings of

the 3rd International Workshop on Link Discovery �ACM
Press, New York, NY, 2005�, pp. 36–43.

V. A. TRAAG AND JEROEN BRUGGEMAN PHYSICAL REVIEW E 80, 036115 �2009�

036115-6


